A multiwavelet support vector regression method for efficient reliability assessment

نویسندگان

  • Hongzhe Dai
  • Boyi Zhang
  • Wei Wang
چکیده

As a new sparse kernel modeling technique, support vector regression has become a promising method in structural reliability analysis. However, in the standard quadratic programming support vector regression, its implementation is computationally expensive and sufficient model sparsity cannot be guaranteed. In order to mitigate these difficulties, this paper presents a new multiwavelet linear programming support vector regression method for reliability analysis. The method develops a novel multiwavelet kernel by constructing the autocorrelation function of multiwavelets and employs this kernel in context of linear programming support vector regression for approximating the limit states of structures. Three examples involving one finite element-based problem illustrate the effectiveness of the proposed method, which indicate that the new method is efficient than the classical support vector regression method for response surface function approximation. & 2014 Elsevier Ltd. All rights reserved.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The Porosity Prediction of One of Iran South Oil Field Carbonate Reservoirs Using Support Vector Regression

Porosity is considered as an important petrophysical parameter in characterizing reservoirs, calculating in-situ oil reserves, and production evaluation. Nowadays, using intelligent techniques has become a popular method for porosity estimation. Support vector machine (SVM) a new intelligent method with a great generalization potential of modeling non-linear relationships has been introduced fo...

متن کامل

The Application of Least Square Support Vector Machine as a Mathematical Algorithm for Diagnosing Drilling Effectivity in Shaly Formations

The problem of slow drilling in deep shale formations occurs worldwide causing significant expenses to the oil industry. Bit balling which is widely considered as the main cause of poor bit performance in shales, especially deep shales, is being drilled with water-based mud. Therefore, efforts have been made to develop a model to diagnose drilling effectivity. Hence, we arrived at graphical cor...

متن کامل

Image watermarking method in multiwavelet domain based on support vector machines

0164-1212/$ see front matter Crown Copyright 2 doi:10.1016/j.jss.2010.03.006 * Corresponding author. Address: School of Electron Electronic Science and Technology of China, Chengdu E-mail address: [email protected] (H. Peng). A novel image watermarking method in multiwavelet domain based on support vector machines (SVMs) is proposed in this paper. The special frequency band and property of image in ...

متن کامل

Development of a Pharmacogenomics Model based on Support Vector Regression with Optimal Features Selection Approach to Determine the Initial Therapeutic Dose of Warfarin Anticoagulant Drug

Introduction: Using artificial intelligence tools in pharmacogenomics is one of the latest bioinformatics research fields. One of the most important drugs that determining its initial therapeutic dose is difficult is the anticoagulant warfarin. Warfarin is an oral anticoagulant that, due to its narrow therapeutic window and complex interrelationships of individual factors, the selection of its ...

متن کامل

Development of a Pharmacogenomics Model based on Support Vector Regression with Optimal Features Selection Approach to Determine the Initial Therapeutic Dose of Warfarin Anticoagulant Drug

Introduction: Using artificial intelligence tools in pharmacogenomics is one of the latest bioinformatics research fields. One of the most important drugs that determining its initial therapeutic dose is difficult is the anticoagulant warfarin. Warfarin is an oral anticoagulant that, due to its narrow therapeutic window and complex interrelationships of individual factors, the selection of its ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Rel. Eng. & Sys. Safety

دوره 136  شماره 

صفحات  -

تاریخ انتشار 2015